Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(6)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34724649

RESUMO

Precise angle-resolved magnetoresistance (ARMR) and magnetization measurements have revealed (i) strong charge transport and magnetic anisotropy and (ii) emergence of a huge number of magnetic phases in the ground state of isotopically11B-enriched single crystals of TmB12antiferromagnetic (AF) metal with fcc crystal structure and dynamic charge stripes. We analyze for the first time the angularH-φphase diagrams of AF state of Tm11B12reconstructed from experimental ARMR and magnetization data arguing that the symmetry lowering leads to the appearance of several radial phase boundaries between different phases in the AF state. It is proposed that the suppression of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange along ⟨110⟩ directions between nearest neighboring magnetic moments of Tm3+ions and subsequent redistribution of conduction electrons to quantum fluctuations of the electron density (dynamic stripes) are the main factors responsible for the anisotropy. Essential (more than 25% atT= 2 K) anisotropy of the Neel field in the (110) plane was found in Tm11B12unlike to isotropic AF-P boundary in theH-φphase diagrams of Ho11B12. Magnetoresistance components are discussed in terms of charge carrier scattering on the spin density wave, itinerant ferromagnetic nano-domains and on-site Tm3+spin fluctuations.

2.
Nature ; 567(7747): 218-222, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760922

RESUMO

The three central phenomena of cuprate (copper oxide) superconductors are linked by a common doping level p*-at which the enigmatic pseudogap phase ends and the resistivity exhibits an anomalous linear dependence on temperature, and around which the superconducting phase forms a dome-shaped area in the phase diagram1. However, the fundamental nature of p* remains unclear, in particular regarding whether it marks a true quantum phase transition. Here we measure the specific heat C of the cuprates Eu-LSCO and Nd-LSCO at low temperature in magnetic fields large enough to suppress superconductivity, over a wide doping range2 that includes p*. As a function of doping, we find that Cel/T is strongly peaked at p* (where Cel is the electronic contribution to C) and exhibits a log(1/T) dependence as temperature T tends to zero. These are the classic thermodynamic signatures of a quantum critical point3-5, as observed in heavy-fermion6 and iron-based7 superconductors at the point where their antiferromagnetic phase comes to an end. We conclude that the pseudogap phase of cuprates ends at a quantum critical point, the associated fluctuations of which are probably involved in d-wave pairing and the anomalous scattering of charge carriers.

3.
Phys Rev Lett ; 121(16): 167002, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387647

RESUMO

We present a detailed study of the temperature (T) and magnetic field (H) dependence of the electronic density of states (DOS) at the Fermi level, as deduced from specific heat and Knight shift measurements in underdoped YBa_{2}Cu_{3}O_{y}. We find that the DOS becomes field independent above a characteristic field H_{DOS}, and that the H_{DOS}(T) line displays an unusual inflection near the onset of the long-range 3D charge-density wave order. The unusual S shape of H_{DOS}(T) is suggestive of two mutually exclusive orders that eventually establish a form of cooperation in order to coexist at low T. On theoretical grounds, such a collaboration could result from the stabilization of a pair-density wave state, which calls for further investigation in this region of the phase diagram.

4.
Nature ; 444(7118): 465-8, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17122852

RESUMO

Although the local resistivity of semiconducting silicon in its standard crystalline form can be changed by many orders of magnitude by doping with elements, superconductivity has so far never been achieved. Hybrid devices combining silicon's semiconducting properties and superconductivity have therefore remained largely underdeveloped. Here we report that superconductivity can be induced when boron is locally introduced into silicon at concentrations above its equilibrium solubility. For sufficiently high boron doping (typically 100 p.p.m.) silicon becomes metallic. We find that at a higher boron concentration of several per cent, achieved by gas immersion laser doping, silicon becomes superconducting. Electrical resistivity and magnetic susceptibility measurements show that boron-doped silicon (Si:B) made in this way is a superconductor below a transition temperature T(c) approximately 0.35 K, with a critical field of about 0.4 T. Ab initio calculations, corroborated by Raman measurements, strongly suggest that doping is substitutional. The calculated electron-phonon coupling strength is found to be consistent with a conventional phonon-mediated coupling mechanism. Our findings will facilitate the fabrication of new silicon-based superconducting nanostructures and mesoscopic devices with high-quality interfaces.

5.
Phys Rev Lett ; 96(9): 097006, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16606302

RESUMO

We present the first scanning tunneling spectroscopy study of single-crystalline boron-doped diamond. The measurements were performed below 100 mK with a low temperature scanning tunneling microscope. The tunneling density of states displays a clear superconducting gap. The temperature evolution of the order parameter follows the weak-coupling BCS law with Delta(0)/kBTc approximately 1.74. Vortex imaging at low magnetic field also reveals localized states inside the vortex core that are unexpected for such a dirty superconductor.

6.
Phys Rev Lett ; 93(23): 237005, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15601192

RESUMO

Homoepitaxial diamond layers doped with boron in the 10(20)-10(21) cm(-3) range are shown to be type II superconductors with sharp transitions (approximately 0.2 K) at temperatures increasing from 0 to 2.1 K with boron contents. The critical concentration for the onset of superconductivity in those 001-oriented single-crystalline films is about 5-7 10(20) cm(-3). The H-T phase diagram has been obtained from transport and ac-susceptibility measurements down to 300 mK.

7.
Phys Rev Lett ; 87(13): 137005, 2001 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-11580620

RESUMO

Experimental support is found for the multiband model of the superconductivity in the recently discovered system MgB(2) with the transition temperature T(c) = 39 K. By means of Andreev reflection, evidence is obtained for two distinct superconducting energy gaps. The sizes of the two gaps ( Delta(S) = 2.8 meV and Delta(L) = 7 meV) are, respectively, smaller and larger than the expected weak coupling value. Because of the temperature smearing of the spectra the two gaps are hardly distinguishable at elevated temperatures, but when a magnetic field is applied the presence of two gaps can be demonstrated close to the bulk T(c) in the raw data.

8.
Phys Rev Lett ; 86(26 Pt 1): 5990-3, 2001 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-11415411

RESUMO

The interlayer transport in a two-dimensional superconductor can reveal a peak in the temperature as well as the magnetic field dependence of the resistivity near the superconducting transition. The experiment was performed on the highly anisotropic misfit-layer superconductor [(LaSe)(1.14)](NbSe(2)) with T(c) of 1.2 K. The effect is interpreted within the tunneling mechanism of the charge transport across the Josephson-coupled layers via two parallel channels--the quasiparticles and the Cooper pairs. Similar behavior can be found in the high-T(c) cuprates but there it is inevitably interfering with the anomalous normal state. The upper critical magnetic field can be obtained from the interlayer tunneling conductance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...